-->

## October Lunchtime AND Plus OR  question solution -

October Lunchtime AND Plus OR  question solution Read the problem statement carefully-

Given an integer $x$, find two non-negative integers $a$ and $b$ such that $\left(a\wedge b\right)+\left(a\vee b\right)=x$, where $\wedge$ is the bitwise AND operation and $\vee$ is the bitwise OR operation.

### Input

• The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
• The first and only line of each test case contains a single integer $x$.

### Output

If there is no valid pair $\left(a,b\right)$, print a single line containing the integer $-1$. Otherwise, print a single line containing two space-separated integers $a$ and $b$.

If there are multiple solutions, you may print any one of them.

### Constraints

• $1\le T\le {10}^{5}$
• $1\le x\le {10}^{18}$

• $1\le T\le 200$
• $1\le x\le 200$

Subtask #2 (70 points): original constraints

### Example Input

2
1
8


### Example Output

0 1
5 3
Join telegram for more editorial-https://t.me/competitiveProgrammingDiscussion
Solution -
This question is very simply you need simple logic to solve this question logic is
 a^ 0=0;
  b OR 0= b;
Now simply print 0 , b this will be correct ans for all test cases.
Here is my code-