## Problem Statement-

Monocarp had a sequence $a$ consisting of $n+m$ integers ${a}_{1},{a}_{2},\dots ,{a}_{n+m}$. He painted the elements into two colors, red and blue; $n$ elements were painted red, all other $m$ elements were painted blue.

After painting the elements, he has written two sequences ${r}_{1},{r}_{2},\dots ,{r}_{n}$ and ${b}_{1},{b}_{2},\dots ,{b}_{m}$. The sequence $r$ consisted of all red elements of $a$ in the order they appeared in $a$; similarly, the sequence $b$ consisted of all blue elements of $a$ in the order they appeared in $a$ as well.

Unfortunately, the original sequence was lost, and Monocarp only has the sequences $r$ and $b$. He wants to restore the original sequence. In case there are multiple ways to restore it, he wants to choose a way to restore that maximizes the value of

$f\left(a\right)=max\left(0,{a}_{1},\left({a}_{1}+{a}_{2}\right),\left({a}_{1}+{a}_{2}+{a}_{3}\right),\dots ,\left({a}_{1}+{a}_{2}+{a}_{3}+\cdots +{a}_{n+m}\right)\right)$

Help Monocarp to calculate the maximum possible value of $f\left(a\right)$.

Input

The first line contains one integer $t$ ($1\le t\le 1000$) — the number of test cases. Then the test cases follow. Each test case consists of four lines.

The first line of each test case contains one integer $n$ ($1\le n\le 100$).

The second line contains $n$ integers ${r}_{1},{r}_{2},\dots ,{r}_{n}$ ($-100\le {r}_{i}\le 100$).

The third line contains one integer $m$ ($1\le m\le 100$).

The fourth line contains $m$ integers ${b}_{1},{b}_{2},\dots ,{b}_{m}$ ($-100\le {b}_{i}\le 100$).

Output

For each test case, print one integer — the maximum possible value of $f\left(a\right)$.

Example
input
Copy
4
4
6 -5 7 -3
3
2 3 -4
2
1 1
4
10 -3 2 2
5
-1 -2 -3 -4 -5
5
-1 -2 -3 -4 -5
1
0
1
0

output
Copy
13
13
0
0

Note

In the explanations for the sample test cases, red elements are marked as bold.

In the first test case, one of the possible sequences $a$ is $\left[\mathbf{6},2,\mathbf{-}\mathbf{5},3,\mathbf{7},\mathbf{-}\mathbf{3},-4\right]$.

In the second test case, one of the possible sequences $a$ is $\left[10,\mathbf{1},-3,\mathbf{1},2,2\right]$.

In the third test case, one of the possible sequences $a$ is $\left[\mathbf{-}\mathbf{1},-1,-2,-3,\mathbf{-}\mathbf{2},-4,-5,\mathbf{-}\mathbf{3},\mathbf{-}\mathbf{4},\mathbf{-}\mathbf{5}\right]$.

In the fourth test case, one of the possible sequences $a$ is $\left[0,\mathbf{0}\right]$.

Solution-