Skip to main content

2545. Sort the Students by Their Kth Score leetcode problem Solution c++ | How to sort 2D vectors in c++ using a custom comparator in c++

 2545. Sort the Students by Their Kth Score Solution c++-

How to sort 2D vectors in c++ using a custom comparator in c++.

This problem is part of leetcode 2545. Here we have to sort a 2D vector using custom comparator 
lets read problem statement first 

problem statement -


There is a class with m students and n exams. You are given a 0-indexed m x n integer matrix score, where each row represents one student and score[i][j] denotes the score the ith student got in the jth exam. The matrix score contains distinct integers only.

You are also given an integer k. Sort the students (i.e., the rows of the matrix) by their scores in the kth (0-indexed) exam from the highest to the lowest.

Return the matrix after sorting it.

 

Example 1:

Input: score = [[10,6,9,1],[7,5,11,2],[4,8,3,15]], k = 2
Output: [[7,5,11,2],[10,6,9,1],[4,8,3,15]]
Explanation: In the above diagram, S denotes the student, while E denotes the exam.
- The student with index 1 scored 11 in exam 2, which is the highest score, so they got first place.
- The student with index 0 scored 9 in exam 2, which is the second highest score, so they got second place.
- The student with index 2 scored 3 in exam 2, which is the lowest score, so they got third place.

Example 2:

Input: score = [[3,4],[5,6]], k = 0
Output: [[5,6],[3,4]]
Explanation: In the above diagram, S denotes the student, while E denotes the exam.
- The student with index 1 scored 5 in exam 0, which is the highest score, so they got first place.
- The student with index 0 scored 3 in exam 0, which is the lowest score, so they got second place.

 

Constraints:

  • m == score.length
  • n == score[i].length
  • 1 <= m, n <= 250
  • 1 <= score[i][j] <= 105
  • score consists of distinct integers.
  • 0 <= k < n

Explanation

Sort on A[i][k]

Complexity

Time O(quick sort)
Space O(quick sort)

Java

    public int[][] sortTheStudents(int[][] A, int k) {
        Arrays.sort(A, (a, b) -> b[k] - a[k]);
        return A;
    }

C++

    vector<vector<int>> sortTheStudents(vector<vector<int>>& A, int k) {
        sort(A.begin(), A.end(), [&](auto const & a, auto const & b) {
            return a[k] > b[k];
        });
        return A;
    }

C++

   static int i=0;
class Solution {
public:
   
   static bool compareScore(vector<int> &v1, vector<int> &v2){
    if(v1[i]>v2[i]){
        return true;
    }
    return false;
}
    vector<vector<int>> sortTheStudents(vector<vector<int>>& score, int k) {
       
        i=k;
        sort(score.begin(), score.end(), compareScore);
        return score;

       
    }  
};


Python
return new copy

    def sortTheStudents(self, A, k):
        return sorted(A, key=lambda a: -a[k])

Comments

Popular posts from this blog

codeforces rating system | Codeforces rating Newbie to Legendary Grandmaster

 Codeforces rating system | Codeforces rating Newbie to Legendary Grandmaster- Codeforces is one of the most popular platforms for competitive programmers and  codeforces rating matters a lot  .  Competitive Programming  teaches you to find the easiest solution in the quickest possible way. CP enhances your problem-solving and debugging skills giving you real-time fun. It's brain-sport. As you start solving harder and harder problems in live-contests your analytical and rational thinking intensifies. To have a good codeforces profile makes a good impression on the interviewer. If you have a good  codeforces profile so it is very easy to get a referral for product base company like amazon, google , facebook etc.So in this blog I have explained everything about codeforces rating system. What are different titles on codeforces- based on rating codeforces divide rating into 10 part. Newbie Pupil Specialist Expert Candidate Codemaster Master International Master Grandmaster Internat

Apple Division CSES Problem Set Solution | CSES Problem Set Solution Apple division with code

 Apple Division CSES Problem Set Solution | CSES Problem Set Solution Apple division with code - Apple Division CSES Problem Solution Easy Explanation. Apple division is problem is taken form cses introductory problem set.Let's Read Problem statement first. Problem Statement- Time limit:  1.00 s   Memory limit:  512 MB There are  n n  apples with known weights. Your task is to divide the apples into two groups so that the difference between the weights of the groups is minimal. Input The first input line has an integer  n n : the number of apples. The next line has  n n  integers  p 1 , p 2 , … , p n p 1 , p 2 , … , p n : the weight of each apple. Output Print one integer: the minimum difference between the weights of the groups. Constraints 1 ≤ n ≤ 20 1 ≤ n ≤ 20 1 ≤ p i ≤ 10 9 1 ≤ p i ≤ 10 9 Example Input: 5 3 2 7 4 1 Output: 1 Explanation: Group 1 has weights 2, 3 and 4 (total weight 9), and group 2 has weights 1 and 7 (total weight 8). Join Telegram channel for code discussi

Concert Tickets Cses Problem set solution | Concert Tickets Cses Problem set solution Using multiset

 Concert Tickets Cses Problem set solution- Porblem statement- Time limit:  1.00 s   Memory limit:  512 MB There are  n n  concert tickets available, each with a certain price. Then,  m m  customers arrive, one after another. Each customer announces the maximum price he or she is willing to pay for a ticket, and after this, they will get a ticket with the nearest possible price such that it does not exceed the maximum price. Input The first input line contains integers  n n  and  m m : the number of tickets and the number of customers. The next line contains  n n  integers  h 1 , h 2 , … , h n h 1 , h 2 , … , h n : the price of each ticket. The last line contains  m m  integers  t 1 , t 2 , … , t m t 1 , t 2 , … , t m : the maximum price for each customer. Output Print, for each customer, the price that they will pay for their ticket. After this, the ticket cannot be purchased again. If a customer cannot get any ticket, print  − 1 − 1 . Constraints 1 ≤ n , m ≤ 2 ⋅ 10 5 1 ≤ n , m ≤ 2 ⋅